Abstract

Zinc ferrite (ZnFe2O4) nanoparticles encased fluorapatite (FAP) nanorods was successfully synthesized through hydrothermal method for biomedical applications. TEM image revealed the formation of ZnFe2O4 nanoparticle encased FAP nanorods with average size of about 60 ± 40 nm. Both ZnFe2O4 and ZnFe2O4–FAP samples exhibited superparamagnetic nature at 300 K with saturation magnetization (Ms) of 28.41 and 4.13 emu/g, respectively. Further, the superparamagnetic property of the ZnFe2O4 was investigated using langevin function and average magnetic moment per particle was found to be 606 $${\mu }_{B}$$ . ZnFe2O4–FAP nanorods exhibited enhanced colloidal stability when compared to ZnFe2O4 nanospheres. The cytotoxicity results confirmed the enhanced cell viability (86%) at 500 µg/mL of ZnFe2O4–FAP nanorods than that of ZnFe2O4 nanospheres (76%). The above results indicate that the ZnFe2O4–FAP nanorods can be considered as a potential candidate for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.