Abstract

With the great deformability of stretch, compression, bend and twisting, while preserving electrical property, metal films on elastomeric substrates have many applications for serving as bioelectrical interfaces. However, at present, most polymer-supported thin metal films reported rupture at small elongations (<10%). In this work, highly stretchable thin gold films were fabricated on PDMS substrates by a novel micro-processing technology. The as deposited films can be stretched by a maximum 120% strain while maintaining their electrical conductivity. Electrical characteristics of the gold films under single-cycle and multi-cycle stretch deformations are investigated in this work. SEM images imply that the gold films are under the structure of nanocracks. The mechanisms of the stretchability of the gold films can be explained by the nanocraks, which uniformly distribute with random orientation in the films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call