Abstract

Self-healing materials are of fundamental interest and practical importance. Herein we report the synthesis of a new class of self-healing materials, formed by the copolymerization of ethylene and anisyl-substituted propylenes using a sterically demanding half-sandwich scandium catalyst. The copolymerization proceeded in a controlled fashion, affording unique multi-block copolymers composed of relatively long alternating ethylene- alt-anisylpropylene sequences and short ethylene-ethylene units. By controlling the molecular weight and varying the anisyl substituents, a series of copolymers that show a wide range of glass-transition temperatures ( Tg) and mechanical properties have been obtained. The copolymers with Tg below room temperature showed high elastic modulus, high toughness, and remarkable self-healability, being able to autonomously self-heal upon mechanical damage not only in a dry environment but also in water and aqueous acid and alkaline solutions, while those with Tg around or above room temperature exhibited excellent shape-memory property. The unique mechanical properties may be ascribed to the phase separation of the crystalline ethylene-ethylene nanodomains from the ethylene- alt-anisylpropylene matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.