Abstract

Microwave-assisted photocatalysis offers a novel approach for degrading antibiotics, while the mechanism of enhancement of microwave-induced photocatalysis remains poorly understood. In this study, tetracycline (TC) was degraded using the method of microwave-assisted photocatalysis with a ZnO catalyst, which was synthesized by the combination of hydrothermal and calcination methods. The self-assembled mesoporous ZnO catalyst exhibited superior catalytic activity in degrading TC. It is found that the degradation efficiency of TC by the ZnO catalysts with microwave-assisted photocatalysis is 4.27 times higher than that of photocatalysis alone. Of particular significance, we found that the optical absorption range of ZnO increased and the band gap decreased when microwave was introduced into the photocatalytic system. Semi-in situ photochemical tests demonstrated that more photogenerated electron-hole pairs were detected under microwave, thus further improving the photocatalytic activity of ZnO. The separation efficiency and charge transfer efficiency of photogenerated electron-hole pairs also improved due to the increase of oxygen vacancies in the synergistic effect. Meanwhile, h+ and ·OH were the main active species in the degradation system. The mechanism of microwave-induced photocatalysis is illustrated, and an efficient way for degrading antibiotic is provided in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.