Abstract

Enzymatic bioconversion of rutin to quercetin-3-O-glucoside (Q-3-G) by Penicillium decumbens naringinase was increased with reaction pH increased approximately to pH 6.0. It resulted in greater than 92% production of Q-3-G due to the removal of the terminal rhamnose at the controlled pH 6.0. The enzymatic bioconversion of rutin to Q-3-G was repetitively performed, yielding 84% after 5 batches with little quercetin formation. Interestingly, the water solubility of Q-3-G was enhanced 69- and 328-fold over those of rutin and quercetin, which may make Q-3-G more bioavailable in food. Q-3-G was approximately 6- and 1.4-fold more potent than rutin as an inhibitor of human intestinal maltase and human DL-3-hydroxy-3-methylglutalyl coenzyme A reductase. Q-3-G was less potent (16- and 1.3-fold, respectively) than quercetin as an inhibitor of these enzymes. However, the results suggest that Q-3-G may be confirmed more effective and bioavailable food component than rutin and even quercetin because of its enhanced solubility and inhibitory properties. Bioconverted intermediate, quercetin-3-O-glucoside (Q-3-G), was found and confirmed to be largely more soluble than rutin and quercetin in water solution, which might make it more bioavailable as food ingredient. In addition, Q-3-G inhibited mildly the intestinal maltase, which might act as antidiabetic substance by modulating the adsorption of glucose in the intestine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call