Abstract

Activation of reduced graphene oxide (RGO) using CO2 to obtain highly porous and metal-free carbonaceous materials for adsorption and catalysis was investigated. A facile one-pot thermal process can simultaneously reduce graphene oxide and produce activated RGO without introducing any solid or aqueous activation agent. This process can significantly increase the specific surface area (SSA) of RGO from 200 to higher than 1200 m2 g−1, and the obtained materials were proven to be highly effective for adsorptive removal of both anionic (phenol) and cationic (methylene blue, MB) organics from water. Moreover, the activated RGO materials exhibited much better activity in effective activation of peroxymonosulfate (PMS) to produce sulfate radicals for oxidative degradation of MB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.