Abstract

Waterborne polyurethane (WPU) prepolymer was synthesized using polypropylene carbonate polyol as the soft segment, dimethylolpropionic acid as a hydrophilic chain extender and isophorone diisocyanate. The prepolymer was modified with aminoethyl aminopropyl dimethicon (AEAPS) to prepare a series of WPU emulsions and films. The structures and the films properties of the WPUs were characterized by Fourier transform infrared spectrometry, gel permeation chromatography, atomic force microscopy, X-ray diffraction, thermogravimetric analysis, dynamic thermomechanical analysis, X-ray photoelectron spectroscopy, water contact angles and water absorption. It was found that pure polypropylene carbonate WPU had a wide molecular weight distribution and its microphase separation was not apparent between its hard and soft segments. The WPU also had a high glass transition temperature (24.5 °C) and its film had a high damping property (tan δ>0.40) from 12 °C to 42 °C. Modification with polysiloxane had enlarged the molecular weight, narrowed the molecular weight distribution and resulted in the microphase separation between the hard and soft segments of WPUs, and this amplified the damping temperature of the WPU films. Along with the increasing utilization of polysiloxane the thermolysis, water resistance and water contact angles of WPU films were improved while the orientation of their structure regularity declined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call