Abstract

The synthesis of nanocomposites via emulsion polymerization was investigated using methyl methacrylate (MMA) monomer, 10 wt % montmorillonite (MMT) clay, and a zwitterionic surfactant octadecyl dimethyl betaine (C18DMB). The particle size of the diluted polymer emulsion was about 550 nm, as determined by light scattering, while the sample without clay had a diameter of about 350 nm. The increase in the droplet size suggests that clay was present in the emulsion droplets. X-ray diffraction indicated no peak in the nanocomposites. Transmission electron microscopy showed that emulsion polymerization of MMA in the presence of C18DMB and MMT formed partially exfoliated nanocomposites. Differential scanning calorimetry showed an increase of 18 degrees C in the glass transition temperature (Tg) of the nanocomposites. A dynamic mechanical thermal analyzer also verified a similar Tg increase, 16 degrees C, for the partially exfoliated nanocomposites over poly(methyl methacrylate) (PMMA). Thermogravimetric analysis indicated a 37 degrees C increase in the decomposition temperature for a 20 wt % loss. A PMMA nanocomposite with 10 wt % C18DMB-MMT was also synthesized via in situ polymerization. This nanocomposite was intercalated and had a Tg 10 degrees lower than the emulsion nanocomposite. The storage modulus of the partially exfoliated emulsion nanocomposite was superior to the intercalated structure at higher temperatures and to the pure polymer. The rubbery plateau modulus was over 30 times higher for the emulsion product versus pure PMMA. The emulsion technique produced nanocomposites of the highest molecular weight with a bimodal distribution. This reinstates that exfoliated structures have enhanced thermal and mechanical properties over intercalated hybrids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call