Abstract
AbstractWell‐dispersed poly(methyl methacrylate) (PMMA)–bentonite clay composite was synthesized by emulsion polymerization using methyl methacrylate (MMA) monomer and 3% sodium carbonate treated bentonite clay. The composite lost its transparency normally encountered with the neat PMMA. The composite was characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), vicat softening point (VSP), dynamic mechanical thermal analysis (DMTA), and tensile studies. The morphology was investigated by scanning electron microscopy (SEM) and atomic forced microscopy (AFM) as well. The crystallography was studied to estimate the changes in crystallographic planes by X‐ray diffraction (XRD) analysis. The particle size distribution was compared amongst neat bentonite clay, neat PMMA and the composite. The FTIR spectra reveal the fact that no new primary valence bond is formed between the clay and PMMA. The thermal stability of the composite is significantly improved, as indicated by the TGA and VSP studies. A substantial increase in glass transition temperature (Tg) approximately, 10°C was recorded from the DMTA as both the storage modulus and tan δ values underwent inflexion at higher temperatures in case of the composite compared with the pristine PMMA. The XRD pattern indicates increase in basal “d” spacing for the composite. The morphology from both the SEM and AFM is quite supportive to well‐dispersed exfoliation. The incorporation of nanosized activated clay particles in PMMA during its in situ polymerization from MMA led to the formation of nanocomposites. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.