Abstract

The synthesis of polycrystalline aluminum oxynitride (AlON) powders was investigated by the carbothermal reduction and nitridation (CRN) of amorphous precursor obtained by wet chemical processing. Co-precipitation processing was employed to achieve amorphous precursor from Al(NO3)3 solution dispersed by nanosized carbon particles, which was composed of Al(OH)3 and C particles homogeneously. The effects of the content of carbon black, pH value, and calcination temperature on formation of AlON phase were investigated by means of XRD, SEM and TEM, respectively. It was found that single phase AlON powder could be synthesized when the resultant precursors were calcined at 1750°C for 2 hours under flowing N2. Under optimal additional content of C (5.6wt%), the resultant AlON powders exhibited the primary particle size of about 1–3 μm with a specific surface area of 3.2 m2/g, which were superior to that of carbothermal reduction of immediate mixture of γ-Al2O3/C powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.