Abstract

Polycarboxylate was synthesized by using polyethylene glycol monomethyl ether methyl-acrylate (PEG16), methylacrylamide sodium (MAS), methacrylic acid (MAA), methyl acrylate (MA), acryl amide (AM), and sodium persulfate (SPS) and evaluated as a superplasticizer for cement particles. The formulation of the superplasticizer: n (PEG16): n (MAS): n (MAA): n (MA): n (AM) =10:18:20:37:20, and the content of the SPS was 1.2wt% of all the monomers and optimized reaction conditions (80°C, 6h) were obtained via orthogonal test and single factor experiments. The water reducing effect of the synthesized copolymers was studied in terms of reaction temperature, reaction time and PEG side chain length. In this study, flow test of cement paste measurements were performed to compare the molecular weight effect on fluidity of the copolymers. It was observed that the reaction temperature had a noticeable effect on the molecular weight of the PEG-grafted samples thus causing a significant effect on fluidity. The polycarboxylate synthesized at about 80°C has given the highest fluidity result. In addition, the reaction time 6~7 hrs was identified for the best. Furthermore, copolymers with mPEG side chains with a degree of 16 gave the highest fluidity and viscosity average molecular weight value. The initial fluidity of the cement paste containing the prepared superplasticizer (1wt%, w(water)/w(cement)=(0.29)) was 316 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call