Abstract
Poly(N-vinylcarbazole) (PNVK) is one of the extensively studied photoconductive polymers because of its wide ranges of applications. Through the reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthates (RAFT/MADIX) polymerizations, in this study we investigated the syntheses of PNVK-based block copolymers (BCPs) with styrene (St) and methyl methacrylate (MMA). A variety of difunctional haloester-xanthate inifers were prepared and subjected to sequential polymerizations through RAFT and ATRP. In the presence of small amounts of bromoxanthate inifers, the 1H NMR spectra showed nearly complete consumption of the NVK monomer, but without formation of PNVK. The bromoxanthate inifer could act as acidic moieties that protonated the highly basic NVK monomer. Through 1H NMR and MALDI-TOF spectroscopic analyses, the structures of byproducts were indentified and a plausible mechanism for their formation was proposed. Alternatively, RAFT/MADIX polymerizations of NVK with two chloroxanthate inifers S-[1-methyl-4-(6-chloropropionate)ethyl acetate] O-ethyl dithiocarbonate and S-[1-methyl-4-(6-chloroisobutyrate)ethyl acetate] O-ethyl dithiocarbonate) provided first-order kinetic plots and well-controlled PNVK-Cl MIs (Mn ≈ 6000–40,000; Mw/Mn < 1.35). Using a suitable ATRP-initiating groups and optimization of the reaction conditions, the BCPs PNVK-b-PSt (Mn ≈ 4900–12,800; Mw/Mn < 1.5) and PNVK-b-PMMA (Mn ≈ 46,000–100,000; Mw/Mn < 1.35) were obtained.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have