Abstract

The known grafting procedures of colloidal silica particles with poly(ethylene glycol) (PEG) lead to grafting layers that detach from the silica surface and dissolve in water within a few days. We present a new grafting procedure of PEG onto silica with a significant improvement of the stability of the grafting layers in aqueous solvents. Moreover, the procedure avoids any dry states or other circumstances leading to strong aggregation of the particles. To achieve the improved water stability, Stöber silica particles are first pre-coated with a silane coupling agent (3-aminopropyl)triethoxysilane (APS) to incorporate active amine groups. The water solubility of the pre-coating layer was minimized using a combination of APS with bis-(trimethoxysilylpropyl)amine (BTMOSPA) or bis-(triethoxysilyl)ethane (BTEOSE). These pre-coated particles were then reacted with N-succinimidyl ester of mono-methoxy poly(ethylene glycol) carboxylic acid to form PEG-grafted silica particles. The particles form stable dispersions in aqueous solutions as well as several organic solvents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.