Abstract

The interaction forces between silicon oxide surfaces in the presence of surfactant solutions were studied. Based on the qualitative and quantitative analysis of these interaction forces the correlation with the structure of the aggregates on the surfaces is analyzed. A colloidal probe atomic force microscope (AFM) was used to measure the forces between two colloidal silica particles and between a colloidal particle and a silicon wafer in the presence of hexadecyltrimethylammonium bromide (CTAB) at concentrations between 0.005mM and 1.2mM. Different interaction forces were obtained for the silica particle–silica particle system when compared to those for the silica particle–silicon wafer system for the same studied concentration. This indicates that the silica particles and the silicon wafer have different aggregate morphologies on their surfaces. The point of zero charge (pzc) was obtained at 0.05mM CTAB concentration for the silica particles and at 0.3mM for the silica particle–silicon wafer system. This indicates a higher charge at the silicon wafer than at the silica particles. The observed long range attractions are explained by nanobubbles present at the silicon oxide surfaces and/or by attractive electrostatic interactions between the surfaces, induced by oppositely charged patches at the opposing Si oxide surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.