Abstract

AbstractThe synthesis by reversible addition‐fragmentation chain transfer (RAFT) polymerization of three phosphonated terpolymers with tailored architecture has been studied. A phosphonated methacrylate (MAUPHOS) was copolymerized with vinylidene chloride (VC2) and methyl acrylate (MA) to prepare a gradient terpolymer poly(VC2‐co‐MA‐co‐MAUPHOS). Besides, hydroxyethyl acrylate (HEA) was used as a functional monomer in RAFT polymerization to prepare a statistical poly(VC2‐co‐MA‐co‐HEA) terpolymer and a diblock poly(VC2‐co‐MA)‐b‐poly(HEA) terpolymer. The HEA‐containing polymers were then modified with a phosphonated epoxide to introduce the phosphonated group. The control of the polymerization was proven by kinetic studies (evolution of molecular weight vs. conversion) and by a successful block copolymerization. The architecture of the terpolymers was determined by the reactivity ratios of the monomers: terpolymerization of VC2, MA, and HEA leading to an ideal statistical terpolymer (no composition drift) whereas terpolymerization of VC2, MA, and the phosphonated methacrylate led to a gradient terpolymer. These terpolymers were characterized by size exclusion chromatography, 31P NMR and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 13–24, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.