Abstract

Reversible addition-fragmentation chain transfer (RAFT) polymerization was utilized to control the grafting of methyl methacrylate (MMA) and methyl acrylate (MA) from natural ramie fibers substrate. The hydroxyl groups of ramie fibers were first converted to 2-dithiobenzoyl isobutyrate as a RAFT chain transfer agent (CTA), which was further grafted with MMA or MA mediated by the RAFT polymerization in a presence of 2-(ethoxycarbonyl)prop-2-yl dithiobenzoate as a free chain transfer agent. Hydrophobic poly(MMA) or poly(MA) modified ramie fibers with contact angles greater than 130° were obtained. The modified ramie fibers were analyzed by gravimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetry and contact angle measurements. The results indicate that the polymer chains had indeed been grafted from the surface of the ramie fibers with an average 33% of the hydroxyl groups in the raw ramie fiber substituted by 2-bromoisobutyryl bromide and an average grafting ratio of 25% poly(MMA) or poly(MA) related to ramie fiber. The homopolymers formed in the copolymerization were also analyzed to estimate molecular weights and polydispersity indices of grafting chains from the surface of ramie fibers by size exclusion chromatography, which showed narrow polydispersity with the PDIs to be <1.32. This study provides a novel and feasible approach to the preparation of functional composite materials for utilizing the abundant natural ramie fiber cellulose resource.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.