Abstract

The current study reports the synthesis of sustainable nano-hydroxyapatite (nHAp) using a wet chemical precipitation approach. The materials used in the green synthesis of nHAp were obtained from environmental biowastes such as HAp from eggshells and pectin from banana peels. The physicochemical characterization of obtained nHAp was carried out using different techniques. For instance, X-ray diffractometer (XRD) and FTIR spectroscopy were used to study the crystallinity and synthesis of nHAp respectively. In addition, the morphology and elemental composition of nHAP were studied using FESEM equipped with EDX. HRTEM showed the internal structure of nHAP and calculated its grain size which was 64 nm. Furthermore, the prepared nHAp was explored for its antibacterial and antibiofilm activity which has received less attention previously. The obtained results showed the potential of pectin-bound nHAp as an antibacterial agent for various biomedical and healthcare applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.