Abstract

Objective(s): The present investigation dealt with the biological production of manganese nanoparticles using Aegle marmelos fruit and assessing the antioxidant and antibiofilm activities. Methods: The nanoparticles were produced using the fruit extract of Aegle marmelos as the reducing agent with potassium permanganate as the substrate. Manganese nanoparticles synthesized were characterized by UV-Vis spectroscopy, Scanning Electron Microscopy, FT-IR spectroscopy and X Ray Diffractometry. Antibiofilm and antioxidant activities of the nanoparticles were assessed by DPPH and crystal violet staining methods respectively and were statistically analysed using SPSS software. Results: The characterisation study reported that the average crystallite size of the formed nanoparticle was 23.7nm. The results indicated that biofilms of gram positive and gram negative bacteria were inhibited at 80 and 100 μg of nanoparticles/ml respectively showing more activity against gram positive bacterial biofilms. The highest activity was observed against E.coli as 1.217±0.43 at 80 μg/ml and B.subtilis as 1.705±0.37 at 100 μg/ml. Maximum activity of nanoparticle against reactive oxygen species was found to be at a concentration of 5mg/ml as 27.31±0.03%. Conclusions: This study demonstrated that the biologically synthesized manganese nanoparticles are environment-friendly with its potential applications against pathogens and could be implied for various other biological purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.