Abstract
The research work aims to synthesize novel series of hydrazones and antioxidant screening. It also aims to evaluate the binding affinities and in silico methods for identifying possible drug targets of synthesized compounds. This report briefly explains the synthesis of a novel series of hydrazones. It was synthesized via. hydrazinolysis of esters to obtain hydrazide, treated with aldehyde and acetophenone to get hydrazones. The spectral confirmed hydrazones exhibited excellent to comparable anti-oxidant as compared to the standard drugs Butylated hydroxytoluene (BHT) and Ascorbic acid. Molecular docking on myeloperoxidase (MPO) demonstrated the ability of this scaffold to correctly recognize the target and engage in significant bonded and non-bonded interactions with key residues therein. In this study, we report effectively synthesized compounds BK-35, BK- 41, BK-26, BK-28, and BK-39 that showed the best DPPH radical scavenging activity. The docking results clearly showed the binding mode of hydrazones into the active site of Myeloperoxidase (MPO). In in-silico results, none of the synthesized compounds, BK-24 to BK- 41, violated Lipinski's rule of five (miLog P ≤ 5). In vitro preliminary anti-oxidant screening results in support by in Silico binding affinity data of novel hydrazones of levofloxacin related molecules BK-24 to BK-41 reported here have emerged as excellent anti-oxidant agents. The inference derived from the in vitro anti-oxidant screening data and the quantitative insights derived from the per-residue interaction analysis with MPO enzyme are now being fruitfully utilized for site-specific mutation around the nucleus to identify selective and potent anti-oxidants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Combinatorial chemistry & high throughput screening
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.