Abstract

Multiple brain disorders are treated by Scutellaria Radix (SR), including cerebral ischemia-reperfusion (CI/R). However, more studies are needed to clarify the molecular mechanism of SR for CI/R. The active substances and potential targets of SR and CI/R-related genes were obtained through public databases. Overlapping targets of SR and CI/R were analyzed using proteinprotein interaction (PPI) networks. GO and KEGG enrichment analyses were performed to predict the pathways of SR against CI/R, and the key components and targets were screened for molecular docking. The results of network pharmacology analysis were verified using in vitro experiments. 15 components and 64 overlapping targets related to SR and CI/R were obtained. The top targets were AKT1, IL-6, CAS3, TNF, and TP53. These targets have been studied by GO and KEGG to be connected to a number of signaling pathways, including MAPK, PI3K-Akt pathway, and apoptosis. Molecular docking and cell experiments helped to further substantiate the network pharmacology results. The active compound of SR was able to significantly decrease the apoptosis of HT22 cells induced by OGD/R. This finding suggests that SR is a potentially effective treatment for CI/R by modulating the MAPK and PI3K-Akt pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call