Abstract

Development of outstanding, cost-effective and elastic hydrogels as bioadhesive using Thiol-Ene click chemistry was verified. The visible light photocrosslinkable hydrogels composed of methacrylated chitosan/2,2′-(Ethylenedioxy) diethanethiol formed in presence of eosin-Y photoinitiator. Such hydrogels hold great promise for wound healing applications due to their tunable properties. Main components of hydrogels were extensively characterized using spectroscopic techniques for chemical analysis, thermal analysis, and topologic nanostructure. Various optimization conditions for best gelation time were investigated. Mechanical properties of tensile strength and elongation at break (%) were verified for best wound healing applications. Optimum hydrogel was subjected to for cytotoxicity and microbial suppression evaluation and in-vivo wound healing test for efficient wound healing evaluations. Our results demonstrate the potential use of injectable hydrogels as valuable bioadhesives in bioengineering and biomedical applications, particularly in wound closure and patches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.