Abstract

Nickel oxide /gadolinium dopped ceria nano powders, NiO/GDC, (NGC) with controlled morphology were synthesized by the sol-gel method. The nickel(II) coordination compounds have been used as new precursors for the preparation of ceramic material, NiO/GDC, as anodic powders for application in solid oxide fuel cell. The formation of diverse morphologies with different porosity was observed by varying the Nickel(II) coordination compounds, [NiL2(µ-acetylenedicarboxylate)]n, [NiL2(µ-terephthalate)]n and [NiL2(µ-2,6 pyridinedicarboxylate)]n,. Then three different kinds of nickel oxide / gadolinium dopped ceria, NGC (a), NGC (b), and NGC (c) samples of different shapes were developed by new precursors. Thiese powders have been used as electrocatalyst for solid oxide fuel cell. The catalytic performance of NGC anodes for the hydrogen oxidation reaction was analyzed via impedance spectra test using yttria-stabilized zirconia (YSZ)-supported symmetry half-cell. The modified NGC (c) anode powder fabricated with the new precursor of [NiL2(µ-2,6 pyridinedicarboxylate)]n (N’-(pyridine-3-yl)methylene)isonicotinohydrazide (L)) presented the least polarization resistivity of 0.106 Ω. cm2 measured at 800 ℃ under humidified H2. The NGC (c) anode powder with a better pore distribution and excellent microstructure demonstrated the most desirable electro-catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.