Abstract

Compared with inorganic phosphonates, organic phosphonates have better chemical stability in water treatment, and are not easy to hydrolyze in higher temperature and wider pH range. In this paper, a one-step synthesis method of ethylene diamine tetra (methylene phosphonic acid) sodium (EDTMPS) and methylene phosphonic acid (DTPMPA) were studied. A new phosphate scale inhibitor was prepared and its scale inhibition performance was evaluated. The results showed that the scale inhibition rate increased with the increase of the concentration of synthetic products (EDTMPS, DTPMPA). At the same concentration, compared with DTPMPA, EDTMPS has better scale inhibition performance, and the maximum scale inhibition rate can reach 96.85%. The scale inhibition performance of composite scale inhibitor is better than that of single scale inhibitor, and the scale inhibition rate of the synthesized products can reach more than 90% after compounding. And inhibitory mechanism has been proposed: Because phosphonates effectively control the rate of nucleation. In addition, polyphosphonates can chelate Ca2+, Mg2+ plasma to form monocyclic or bicyclic chelates. This will destroy the normal growth process of calcium carbonate and other crystals, thus preventing the formation of calcium carbonate scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call