Abstract

AbstractThe synthesis of Faujasite‐type zeolites with high purity has been successfully performed from Tunisian kaolinite and the effects of different crystallization parameters on the final products were widely investigated. The alkaline fusion of kaolinite followed by hydrothermal treatment lead to zeolite NaX synthesis whereas the classic hydrothermal transformation of metakaolinite produces NaY zeolite. The results show that an increase in the synthesis temperature and time has improved the crystallization process of the zeolite NaX whereas the SiO2/Al2O3 and the Na2O/SiO2 molar ratios were the key parameters to obtain a pure zeolite NaY. The highest specific surface areas obtained with the optimal crystallization conditions were 554 m2 g−1 and 592 m2 g−1 for respectively NaX and NaY zeolites. The basic properties of NaX and NaY zeolites were explored in the Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate at 140 °C as a test reaction in the absence of solvent. The influence of ion exchange with cesium cation on the catalytic activity of prepared catalysts was also investigated. It was found that the NaX provided higher activity than that of NaY catalyst due to its lower Si/Al ratio whereas a cesium exchange conferred higher basicity to the prepared Na‐faujasite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call