Abstract

A custom waveguide apparatus is constructed to study the microwave synthesis of zeolites by in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The WR-284 waveguide is used to heat precursor solutions using microwaves at a frequency of 2.45 GHz. The reaction vessels are designed to include sections of thin-walled glass, which permit X-rays to pass through the precursor solutions with minimal attenuation. Slots were machined into the waveguide to provide windows for X-ray energy to enter and scatter from solutions during microwave heating. The synthesis of zeolites with conventional heating is also studied using X-ray scattering in the same reactor. SAXS studies show that the crystallization of beta zeolite and NaY zeolite is preceded by a reorganization of nanosized particles in their precursor solutions or gels. The evolution of these particles during the nucleation and crystallization stages of zeolite formation depends on the properties of the precursor solution. The synthesis of NaA and NaX zeolites and sodalite from a single zeolite precursor is studied by microwave and conventional heating. Microwave heating shifts the selectivity of this synthesis in favor of NaA and NaX over sodalite; conventional heating leads to the formation of sodalite for synthesis from the same precursor. The use of microwave heating also led to a more rapid onset of NaA zeolite product crystallization compared to conventional heating. Pulsed and continuous microwave heating are compared for zeolite synthesis. The resulting rates of formation of the zeolite products, and the relative amounts of the products determined from the WAXS spectra, are similar when either pulsed or continuous microwave heating is applied in the reactor while maintaining the same synthesis temperature. The consequences of these results in terms of zeolite synthesis are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.