Abstract

The effect of ammonia concentration on the region of existence of single-phase water-in-oil microemulsions has been investigated for the system polyoxyethylene (5) nonylphenyl ether (NP-5)/cyclohexane/ammonium hydroxide. The presence of ammonia decreases the size of the microemulsion region. A minimum concentration of surfactant (estimated at about 1.1 wt%) is required for solubilization of the aqueous phase; this value is not significantly affected by ammonia concentration. As indicated by fluorescence spectral data, the transition between bound and free water occurs when the water-to-surfactant molar ratio is about 1 and the presence of ammonium hydroxide does not appear to have a significant effect on this. Ultrafine (30–70 nm diameter), monodisperse silica particles produced by hydrolysis of tetraethoxysilane (TEOS) in the microemulsion show a complex dependence of the particle size on the water-to-surfactant molar ratio (R) and on the concentration of ammonium hydroxide. At relatively low ammonia concentration in the aqueous pseudophase (1.6 wt% NH3) the particle size decreases monotonically with increase in R. However, for higher ammonia concentrations (6.3–29.6 wt% NH3) a minimum in particle size occurs as R is increased. These trends are rationalized in terms of (a) the effects of the concentration, structure, and dynamics of the NP-5 reverse micelles on the hydrolysis and condensation reactions of TEOS, and (b) the effects of ammonia concentration on the stability of the microemulsion phase, the hydrolysis/condensation reactions of TEOS, and the depolymerization of siloxane bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call