Abstract

Nano-sized antimony-doped tin oxide (ATO) particles were synthesized using DC arc plasma jet. The precursors SnCl 4 and SbCl 5 were injected into the plasma flame in the vapor phase. ATO powder could conveniently be synthesized without any other post-treatment in this study. To control the doping amount of antimony in the ATO particles, the Sb/Sn molar ratio was used as an operating variable. To study the effect of carrier gas on the particle size, argon and oxygen gases were used. The results of XRD and TGA show that all Sb ions penetrated the SnO 2 lattice to substitute Sn ions. With the increased SbCl 5 concentration in source material, the Sb doping level was also increased. The size of the particles synthesized using the argon carrier gas was much smaller than that of the particles prepared using the oxygen carrier gas. For the argon gas, PSA results and SEM images reveal that the average particle size was 19 nm. However, for the oxygen gas, the average particle size was 31 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.