Abstract

The effect of the addition of antimony doped tin oxide (ATO) nanoparticles on the electrical conductivity of acrylate films is described. To enable dispersing of ATO in acrylate matrices, 3-methacryloxypropyltrimethoxysilane (MPS) was grafted on the surface of the filler. The amount of MPS used for this surface modification was found to strongly affect the electrical conductivity. Surface modification with a large amount of MPS resulted in colloidally stable dispersions of ATO, leading to a homogeneous distribution. Surface modification with small amounts of MPS led to instable ATO dispersions and aggregation of ATO into a fractal type network, which gives a much higher conductivity especially at low-volume fractions. For composites with a fractal type ATO network a second effect was found. Decreasing the amount of on ATO grafted MPS resulted in an increase of the electrical conduction between the ATO particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call