Abstract

This study created green multifunctional geopolymeric sorbent material with strong cationic dye adsorption capacity and superior mechanical strength to broaden lead sludge (LS)-based geopolymer applications. In this study, two geopolymeric sorbents (Go and G) were fabricated using slag blended with 0 and 50 wt% LS, respectively and activated with 6 wt% NaOH. The Go and G specimens were normally cured for up to 28 days, while G specimens were hydrothermally cured at different steam-pressures to modify/improve histological characteristics as well as mechanical resistance. The selected sorbents were characterized via XRD, FTIR, TGA/DTG, XPS, N2-adsorption/desorption and SEM/EDX techniques. G/5 bar′s high strength and adsorption capacity may be due to the production of CSH, CAH, CASH, and NASH, which formed a fine mesoporous zeolitic structure with the highest BET-surface area (64.55 m2/g) and lowest BJH-maximum pore diameter (9.68 nm). The maximum MB adsorption capacity of the synthesized adsorbent was 230.4 mg/g.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call