Abstract

We successfully synthesized variant hierarchical assembled flower-like SnO2 via a simple hydrothermal technique and subsequent calcination. The structures and morphologies of the 3D nanostructures were investigated by means of powder X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The formation mechanism of these materials were proposed in detail. The gas-sensing performances of the as-prepared SnO2 were investigated towards ethanol. It is noted that the flower-sheet SnO2 sensor displayed particular response to the target gas, rendering SnO2 as a potential gas-sensing material for a broad range of future sensor applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call