Abstract

Tin oxides and carbon (SnO2@C) composite hollow spheres with improved electrochemical performance were fabricated via a facile hard template route. Monodispersed polystyrene (PS) spheres were synthesized and utilized as hard templates. A thin and porous layer of SnO2 nanoparticles was deposited on a PS surface using a well controlled sol–gel method, so that the morphology of the active SnO2 layer could be optimized for a better electrochemical performance. Furthermore, a continuous carbon coating layer was incorporated with an aim of enhancing the conductivity, holding the structure integrity, and thus improving the cycling performance of the anode material. With such a carefully designed nanostructure, the as-prepared SnO2@C composite hollow spheres possessed the desired features for a good electrode material. After 50 successive cycles, SnO2@C anode was able to deliver a capacity of 495 mAh g−1 at a scan rate of 100 mA g−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call