Abstract
Polyhedral cobalt microcrystals assembled on hollow glass spheres are successfully synthesized by a facile and easy-control hydrothermal reduction process, and thus hierarchical glass/cobalt core/shell composite hollow spheres are fabricated with low-density (0.96 g cm −3). By properly tuning the process conditions and the component of the reaction solution, a series of composite spheres with gradient in morphologies of the shell layer can be prepared. Based on a series of contrast experiments, the probable formation mechanism of the core/shell hierarchical structures is proposed. The magnetic properties of the products are studied and the results demonstrate that the composite spheres present ferromagnetic properties related to the special shell morphologies. The composite hollow spheres thus obtained may have some promising applications in the fields of low-density magnetic materials, conduction, and catalysis, etc. This work provides an additional strategy to prepared core/shell composite spheres with tailored shell morphology and magnetic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.