Abstract

Monodisperse silica particles (SiPs) of diameter between 100 and 1500 nm were surface-modified in a mixture of ethanol/water/ammonia with a newly designed triethoxysilane having an atom transfer radical polymerization (ATRP) initiating site, (2-bromo-2-methyl)propionyloxyhexyltriethoxysilane. The surface-initiated ATRP of methyl methacrylate (MMA) mediated by a copper complex was carried out with the initiator-fixed SiPs in the presence of a “sacrificial” (free) initiator. The polymerization proceeded in a living manner in all examined cases, producing SiPs coated with well-defined PMMA of a target molecular weight up to 480K with a graft density as high as 0.65 chains/nm2. These hybrid particles had an exceptionally good dispersibility in organic solvents. Transmission electron microscopic and atomic force microscopic observations of their monolayers prepared at the air−water interface revealed that they formed an ordered 2-dimensional lattice extending throughout the monolayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.