Abstract
Determination of amphetamine-type drugs (ATSs) in urine and wastewater is a simplified approach for the widespread monitoring of ATSs abuse. To improve the sensitivity of the analytical methods, molecularly imprinted polymers (MIPs) based solid-phase extraction (SPE) pretreatment attracted great attention in this field. Generally, smaller particle sizes and more uniform morphology of the MIPs could provide higher detection sensitivity. Our previous works showed reflux precipitation polymerization (RPP) is a method for synthesizing monodispersed MIPs with small particle size. However, synthesis of uniform spherical MIPs towards a group of targets has never been reported. Therefore, in the present work, MIPs towards a group of ATSs were synthesized via RPP with a pseudo template for the first time. After screening potential pseudo-templates, N-methylphenylethylamine (MPEA) was selected as the optimal pseudo-template. MPEA-MIPs were characterized by scanning electron microscope (SEM), FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS) spectra. Adsorption isotherms, adsorption kinetics and selectivity were evaluated, and the experimental results indicated that the MPEA-MIPs possessed good selectivity and adsorption property towards ATSs. After optimization of the MIP-SPE procedure, the MIP-SPE cartridges were then coupled with liquid chromatography and tandem mass spectrometry (LC-MS/MS) for determination of ATSs. The evaluation results showed that MIP-SPE-LC-MS/MS displayed good linearity (R2 >0.991) in the linear range (1.0–50.0 µg/L for urine and 0.5–50.0 µg/L for wastewater), and low matrix effect (85–112%). The limit of detection (LOD) was 0.05 -0.29 µg/L, and the accuracy (85–115%) and repeatability (RSD ≤ 15%) were satisfactory at low, medium and high concentrations. To the best of our knowledge, this is the first time that dummy MIPs towards a group of ATSs were synthesized by RPP polymerization, which showed great potential for the detection of ATSs in urine and wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.