Abstract

A molecularly imprinted polymer (MIP) is a synthetic polymer that has characteristics such as natural receptors which are able to interact and bind to a specific molecule that is used as a template in the MIP polymerization process. MIPs have been widely developed because of the need for more selective, effective, and efficient methods for sample preparation, identification, isolation, and separation. The MIP compositions consist of a template, monomer, crosslinker, initiator, and porogenic solvent. Generally, MIPs are only synthesized using one type of monomer (mono-functional monomer); however, along with the development of MIPs, MIPs began to be synthesized using two types of monomers to improve the performance of MIPs. MIPs used for identification, separation, and molecular analysis have the most applications in solid-phase extraction (SPE) and as biochemical sensors. Until now, no review article has discussed the various studies carried out in recent years in relation to the synthesis of dual-functional monomer MIPs. This review is necessary, as an improvement in the performance of MIPs still needs to be explored, and a dual-functional monomer strategy is one way of overcoming the current performance limitations. In this review article, we discuss the techniques commonly used in the synthesis of dual-functional monomer MIPs, and the use of dual-functional monomer MIPs as sorbents in the MI-SPE method and as detection elements in biochemical sensors. The application of dual-functional monomer MIPs showed better selectivity and adsorption capacity in these areas when compared to mono-functional monomer MIPs. However, the combination of functional monomers must be selected properly, in order to achieve an effective synergistic effect and produce the ideal MIP characteristics. Therefore, studies regarding the synergistic effect of the MIP combination still need to be carried out to obtain MIPs with superior characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.