Abstract

In the present work, magnetic CuFe2O4 nanoparticles were synthesized through a sol-gel combustion. The synthesized CuFe2O4 were coated with mesoporous SiO2. The synthesized CuFe2O4@SiO2 nanocomposite was investigated for drug release and hyperthermia applications. The products were studied by X-ray diffraction analysis, Fourier-transform infrared spectroscopy, simultaneous thermal analysis, Brunauer-Emmett-Teller surface area, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer. TEM images showed the formation of silica coating with a thickness of 14 nm around copper ferrite. The surface area of the samples increases from 2.59 to 199.2 m2/g after the surface modification of ferrites nanoparticles with silica. The CuFe2O4@SiO2 exhibited high ibuprofen loading and controlled drug release. These improvements resulted from the nanocomposite's mesoporous structure and high surface area. Coating CuFe2O4 nanoparticles with mesoporous silica reduced the cytotoxicity and improved drug release properties. However, this coating reduced the hyperthermia ability. The formed CuFe2O4@SiO2 nanocomposites show high potential for simultaneous drug release and hyperthermia applications with prospective use for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call