Abstract

Surface-initiated atom transfer radical polymerization (SI-ATRP) was used to tether poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) onto microporous PVDF membranes in order to synthesize membrane adsorbers for protein adsorption. The alkaline treatment and bromine addition reaction were used to anchor ATRP initiators on membrane surface. Then PDMAEMA was grafted from the membrane surface via SI-ATRP. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) revealed the chemical composition and surface topography of the PVDF-g-PDMAEMA membrane surfaces. These results showed that PDMAEMA was grafted from the membrane surface successfully and a grafting yield as high as 1500 μg/cm2 was achieved. The effects of the grafting time and the density of initiators on the static and dynamic binding capacity of bovine serum albumin (BSA) were systematically investigated. Both the static and dynamic binding capacities increase with the bromination and polymerization time. However, the benefits of the initiator density on binding capacities are limited by the graft density of PDMAEMA chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.