Abstract
The immobilization of a polymer-nanolayer containing ligand sites is a widely used approach to increase the binding capacity of membrane adsorbers. In this work strong anion-exchange membrane adsorbers were produced via surface-initiated atom transfer radical polymerization (SI-ATRP) using a monomer bearing a quaternary amine group (Q-type). Additionally the architecture of the polymer-nanolayer has been controlled with respect to the length and density of the grafted polymer chains and in terms of ligand density and interchain crosslinking degree. The influence of these architecture parameters on the membrane permeability and the static binding capacity towards bovine serum albumin (BSA) as a model protein has been investigated. It could be shown that these parameters have a major impact on the performance of the produced membrane adsorbers. While the chain-length and –density significantly increase the binding capacity, a decrease in permeability is observed. The interchain crosslinking degree and a reduction of the ligand density increase the permeability, but simultaneously the static binding capacity is slightly diminished. A well-chosen combination of these architecture parameters can produce membrane adsorbers with static binding capacities >100mg/mL membrane volume (MV) while still maintaining a specific permeability >40mL/(min·cm2·bar), far superior to commercially available products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.