Abstract

Abstract A magnetic photocatalytic CoFe2O4/g-C3N4 composite was successfully synthesized by a simple calcination method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared (IR) spectra, UV–Vis diffuse reflection spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) were applied to characterize the as-prepared samples. The magnetic properties of CoFe2O4 and CoFe2O4/g-C3N4 composites were measured by using a vibrating sample magnetometer (VSM) at room temperature. Photocatalytic property of the CoFe2O4/g-C3N4 composite was assessed by degrading methylene blue (MB) in aqueous medium under visible light irradiation. The results showed that the composite of 41.4% CoFe2O4/g-C3N4 exhibited the highest photocatalytic activity. It could activate H2O2 to degrade MB up to 97.3% in 3 h under the visible light irradiation. This enhancement could be attributed to the synergistic effect between CoFe2O4 and g-C3N4, which could enhance their activity of activating H2O2 to degrade MB under visible light. The CoFe2O4/g-C3N4 composites also have a strong magnetic ability. After the photocatalytic reaction, it can be quickly separated from the water by an extra magnetic field. Moreover, a possible photocatalytic mechanism was proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.