Abstract

This paper reports the synthesis of high quality LiYF4, BaYF5, and NaLaF4 nanocrystals by high-temperature co-decomposition of precursors in organic solvents. Their bulk counterparts have long been used as efficient luminescent hosts for various applications including lasers, upconversion fluorescence, and quantum cutters. The particles were characterized using TEM, XRD, dynamic light scattering (DLS), and fluorescence spectrometry. Trifluoroacetic acid (CF3COOH) and the reaction temperature were crucial for the formation of NaLaF4 and LiYF4 nanoparticles. NaLaF4 was not formed without using CF3COOH, only LaF3 and NaF mixture was formed. NaLaF4 nanoparticles were obtained only when CF3COOH was added in the reaction solution and the temperature was > or =330 degrees C. For the synthesis of LiYF4,, in the absence of CF3COOH in the reaction, a mixture of YOF and LiYF4 nanoparticles was formed. Pure LiYF4 particles were obtained only until CF3COOH was added in the reaction at 340 degrees C or above. The nanoparticles were easily dispersed in organic solvents include hexane, toluene, and chloroform and formed transparent colloidal solutions. The ease of doping of these as-synthesized host nanoparticles for designed optical properties was assessed. The LiYF4, BaYF5, and NaLaF4 nanoparticles, co-doped with 20% Ytterbium (Yb) and 2% Erbium (Er), showed bright upconversion fluorescence upon 980 nm NIR excitation, confirming the high quality of as-synthesized nanoparticles. These nanoparticles are potential candidates for nano-optical devices, thin films, telecommunication, and bio-probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.