Abstract

Large area aligned carbon nanotube (CNT) arrays have been successfully synthesized from C2H2 and H2 mixture by rf plasma-enhanced chemical vapor deposition (without hot filament) on iron-coated silicon substrates. H2 plasma (not H2 gas) was confirmed to play the role of reducing iron oxide to metallic iron and promoting the formation of evenly separated particles, as well as being the primary factor in synthesizing aligned CNTs. The addition of H2 gas with no plasma during the growth resulted in randomly oriented CNTs. Meanwhile, without the addition of H2, the C2H2 plasma resulted in the growth of very fine worm-like carbon fibers. Using substrates with a thicker catalyst layer (>90 nm) reduced the CNT density significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.