Abstract

Synthesis of hydroxyapatite (HA) in organic solutions has received extensive attention in recent years with an attempt to obtain HA of a nanometer level. In this preliminary study, we demonstrated that organic-HA nanocomposites could also be achieved with one step method via in situ mineralization and subsequent crosslinking of organic species. This design was realized through in situ synthesis of hydroxyapatite in poly(vinyl alcohol) and acrylic acid aqueous solution as an organic template. The aforementioned organic-inorganic nanocomposites were analyzed by using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electrical microscopy, thermal analysis. The comparative structural measurements were also conducted with the synthesized HA with absence of the organic template. The results indicated that the existence of organic species effectively inhibits the growth of calcium phosphate and that relatively pure HA can be obtained in sintered composite products. The present study provides a direct and versatile route for fabrication of nanocomposite biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.