Abstract

Hydroxyapatite (HA) powder has been successfully synthesized from low-cost Indian clam seashells by using hydrothermal method. The mixture of tri-calcium phosphate [Ca3(PO4)2], heat-treated ball-milled clam seashell, and demineralized water are heat-treated at several temperatures (700 °C, 800 °C, 900 °C, 1000 °C, and 1100 °C) for various time periods (1 h, 2 h, and 3 h) to perform the hydrothermal reactions. The phases and microstructure of the solid-state reaction products are analyzed through X-ray diffraction (XRD) method and field emission scanning electron microscopy (FESEM) respectively. The crystallite size of all the synthesized powders is calculated by using Scherrer's model. Mainly HA phase is obtained in all the different reaction products. However, these HAs are found to be non-stoichiometric in nature. As per the literature, non-stoichiometric HA is a more biologically active material compared to the stoichiometric one. Almost pure HA is formed with any selected reaction temperature applied for 2 h time duration. The crystallinity and Ca/P ratio of the synthesized pure HA are estimated by using standard model and energy-dispersive X-ray spectroscopy (EDS) analysis, respectively. The highest amount of near stoichiometric crystalline HA has been obtained at 900 °C of reaction temperature applied for 2 h time duration. With raising reaction temperature, the grain size of pure HA is found to be increased. Needle/rod shaped nano grains are noticed to form at lower reaction temperature whereas; beyond 1000 oC of temperature globular/spherical shaped grains are also observed to form. At 3 h reaction time agglomeration of grains is found to occur in all the synthesized powders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call