Abstract
Hollow silica nanoparticles were prepared from Dy2O3@SiO2 core–shell nanocomposites, for the first time, by a simple ultrasonic assisted sol–gel method. The Dy2O3@SiO2 core–shell nanocomposites were prepared by the deposition of a SiO2 layer onto the surface of Dy2O3 nanoparticles using a three-step coating process. The hollow SiO2 nanostructures were obtained by selective removal of the Dy2O3 cores. The structure, morphology and composition of the products were determined by the techniques of X-ray diffraction, Fourier transfom infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicated that hollow SiO2 nanostructures were sphere-like shape with the average size of 20 nm and had an amorphous crystal structure. The important advantage of this process is the recyclability of the Dy2O3 nanoparticles as the starting material of the reaction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have