Abstract
Bead-foaming technology effectively addresses production cycles, polymerization control, and cellular structure defects in conventional bulk foaming, especially in high-performance PMI foams. In this work, highly expandable PMI beads were synthesized based on the aqueous suspension polymerization of methacrylic acid-methacrylonitrile-tert-butyl methacrylate (MAA-MAN-tBMA) copolymers. The suspension polymerization was stabilized by reducing the solubility of MAA by the salting-out effect and replacing formamide (a common PMI foaming agent) with tBMA. The polymerization process was optimized by varying salting-out agents, dispersants, water-to-oil ratio (WOR), and stirring speed to achieve uniform bead sizes (0.2–0.4 mm) and high bead yields (>70%). The expansion ratio of the beads can be easily tuned by adjusting tBMA content and foaming time and temperature. Beads with 10%tBMA can reach up to 64 times under a free-forming process at 240 °C, which serves as an excellent precursor toward high-performance in-mold foaming PMI. The beads exhibit excellent in-mold foaming capabilities, thermal stability (Td = 392 °C), and mechanical properties. This work provides a technical foundation for the bead-foaming technology of PMI foams, reducing the cost of PMI foam production and providing the possibility to expand the application of PMI foam in civilian use.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have