Abstract

This Article describes a simple two-step synthesis of comb block copolymers with molecular weights exceeding 1,000,000 g mol(-1) and their assembly into ordered morphologies in the solid state. This work is exciting because these polymers assembled into morphologies with domain sizes exceeding 100 nm and, in some examples, 200 nm without the use of additives. These materials reflected selected wavelengths of visible light, and these wavelengths could be affected by swelling with methylene chloride vapor. A comparison between the structures of comb block copolymers and linear block copolymers is presented with a discussion of important parameters affecting their assembly in the solid state. This Article will first describe the synthesis of comb block copolymers using ring opening metathesis polymerization and atom transfer radical polymerization and their subsequent characterization. The comb block copolymers, backbone polymers, and polystyrene arms were all characterized independent of each other and had low polydispersities. The comb block copolymers were assembled by dissolving in methylene chloride and allowing the solvent to evaporate. After thermal annealing, the polymers were characterized by scanning electron and optical microscopy. These polymers assembled into spherical, lamellar, and cylindrical arrays with domain sizes from 132 to 258 nm. This work extends the molecular architectures of polymers that can be assembled in the solid state, the molecular weights of block copolymers that were assembled, and the domain sizes that can be realized without the use of additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.