Abstract

Herein, we report for the first time a simple strategy to design a hierarchical chemically exfoliated magnesium diboride and guar gum network structure decorated with Ru nanoparticles (eMgB2-GG@Ru) as an electrode to evaluate its electrochemical performance for the application of supercapacitor. The eMgB2 and functionalized eMgB2-GG@Ru materials were thoroughly examined using XRD, TGA, DLS, FE-SEM, STEM, AFM, XPS, and BET techniques. The combined eMgB2-GG@Ru electrode exhibits a network structure morphology with an increased interlayer distance of eMgB2 nanolayers along with a uniform distribution of spherical Ru nanoparticles. The electrochemical performance of eMgB2-GG@Ru and its pristine materials was studied through CV, GCD, and EIS to determine their supercapacitor performance. The eMgB2-GG@Ru electrode demonstrates higher specific capacitance (352 F/g) than its eMgB2@Ru (258.9 F/g), and MgB2 (214.5 F/g) counterparts at a current density of 0.5 A/g in a three-electrode setup using 3 M KOH electrolyte. The hierarchical eMgB2-GG@Ru solid-state symmetric devices maintained higher capacity retention of 89 % even after 7000 cycles, achieving a maximum energy density of 26.12 kW/kg at the power density of 450 W/kg at 0.5 A/g. Therefore, the innovative eMgB2-GG@Ru electrode offers superior electrochemical performance with efficient electrolyte ion mobility for energy storage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.