Abstract

Anisotropic Au nanoplates are particularly important owing to their unusual properties. Herein, we describe a plant-mediated bioreduction method to increase the yield of Au nanoplates and shorten the reaction time through a kinetically manipulated procedure. More specifically, the reduction rate was controlled by modulating experimental factors such as the addition mode and rate of the feed solutions, the temperature, and the pH based on a syringe-pumps apparatus. The dimensions of the obtained Au nanoplates were measured using TEM and AFM. The single-crystalline structure was demonstrated by HRTEM, SAED, and XRD. The results of XPS, FTIR, and TG analyses indicated strong affinity of the biomolecules binding to the Au nanoplate facets. In particular, the nanoplate films exhibited strong surface plasmon absorbance in the near-infrared range of 700–3000 nm, vital for optical applications. Furthermore, we propose a mechanism for this formation following the time-resolved studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.