Abstract
In this work, the pulsed laser ablation technique was used, which is considered a good and distinctive method. Gold nanoparticles (AuNP) were prepared using an Nd-YAG laser with specific parameters, wavelength 1064 nm, constant ablation energy 1000 mJ, frequency 1 Hz, and different number of pulses (300, 600, and 900 pulse/sec). Deionized water was used as the medium liquid. The purpose of this study was to examine the change in these parameters on AuNP using a variety of Xrd, FESEM, Uv-Vis, force-hardness, and compression measurements. The pure cubic crystal structure of gold nanoparticles was analyzed using XRD. Subsequent FESEM images (average diameters 78.07nm, 49.15nm, 37.67nm) indicate that the particles had highly spherical and quasi-spherical shapes. Using ultraviolet analysis, the absorption band of gold nanoparticles was found and the wavelength was (518, 519, 524) nanometers, respectively. There were three different power gaps (1.895, 2.005, and 2.084) eV. In addition, mechanical property tests were conducted, where 2 ml of gold nanoparticles were mixed with (3 grams) of traditional dental filling. The hardness value increased by (3%). The results also showed an increase in the stress and strain value and an increase in Young’s modulus. Hence, an increase in the compressive strength. This indicates that AuNP affects the mechanical properties and enhances their effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Nanoelectronics and Materials (IJNeaM)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.