Abstract

Highly stable gold and silver nanoparticles were synthesized by use of an arabinoglucan from Lallemantia royleana seeds without additional use of reducing or stabilizing agents. The mechanism involved the reduction potential of the hemicellulose as verified by cyclic voltammetry. The arabinoglucan used was substantially free from ferulic acid and phenolic content, suggesting the inherent reducing potential of arabinoglucan for gold and silver ions. The synthesized nanoparticles exhibited surface plasmon resonance maxima at 515 nm (gold) and 397 nm (silver) corresponding to sizes of 10 nm and 8 nm, respectively. The zeta potential values were −24.1 mV (gold) and −22.3 mV (silver). The silver nanoparticles showed potential for application in surface-enhanced Raman spectroscopy. Gold nanoparticles were found to be non-toxic, whereas silver nanoparticles exhibited dose-dependent biological activities and found to be cytotoxic against brine shrimps and HeLa cell lines and the tumours caused by A. tumefaciens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.